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Abstract 

C-periodic boundary conditions are introduced to SU(N) gauge theory on a torus. 
C-periodic fields are replaced by their charge conjugates when they are shifted over the 
boundary. As for periodic boundary conditions the most general C-periodic boundary 
condition includes twist. The topological structure with C-periodic boundary conditions 
is quite different from the periodic case. In the periodic ease twist leads to the HN 
‘t Hooft flux sectors. In the C-periodic case with even N the symmetry of the flux sectors 
is reduced to &. For odd N the flux sectors are eliminated completely. Furthermore, 
the topological charge is an integer when N is odd, whereas it can be a half-integer 
when N is even. 
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1 Introduction 

Field theories are often formulated with periodic boundary conditions, i.e. on a torus. The finite 
volume regulates infrared divergencies without compromising global symmetries or gauge invari- 
ance. Because the torus has no curvature it is locally identical to the infinite volume flat space, 
and hence the infrared regulator does not introduce geometrical artifacts. However, since the torus 
differs topologically from the infinite volume, various topological peculiarities arise. For example, 
SU(N) Yang-M& theories possess ZN electric and magnetic flux sectors [l], which decouple in the 
infinite volume limit. 

Another topological peculiarity of periodic boundary conditions has to do with charged particles. 
A charged state cannot exist in a periodic volume, because its flux cannot go to infinity. The 
flux must end in anti-charges such that the total periodic system is neutral. More formally, this 
is a consequence of Gauss’ law for spaces with no boundary. In Abelian theories this property 
can be avoided with anti-periodic boundary conditions for the gauge field, because then the flux 
lines emanating from a charge can end in its (charge-conjugate) image on the “other” side of 
the boundary. Anti-periodic boundary conditions have been used to facilitate a recent study of 
magnetic monopole charges [Z] in an Abelian IL lattice gauge theory. 

This paper investigates a new boundary condition for non-Abelian gauge fields, which is a 
generalization of anti-periodic boundary conditions for Abelian fields. We call these boundary 
conditions C-periodic, because gauge invariant operators with C = +l are periodic and those with 
C = -1 are anti-periodic.’ The new boundary condition identifies the field at 2 + Zei with its 
charge conjugate at E, where the tit vectors ei and the length Z generate the torus. The various 
components of the gauge potential A” acquire different phases at the boundary. To be specific the 
most general C-periodic boundary condition for the gauge field is 

A(e + Zei) = l-l;(~)[V f A’(~)]ft;~(z), (l-1) 

where I: denotes complex conjugation, and we write A = AOT”, where the T’ are anti-Hermitian 
generators of su(N).s The SU(N) functions ni are “twists,” as introduced by ‘t Hooft for periodic 
boundary conditions. Eq. (1.1) specifies connections in &.SU(N)/HN bundles over the term with 
fiber SU(N)/ZN. The Hs factor in the semi-direct product describes charge conjugation. With C- 
periodic boundary conditions there is a non-trivial & transition function at the boundary, whereas 
with periodic boundary conditions all & transition functions are trivial. If N = 2 the gauge 
transformation 

h==rp($+, (1.2) 

converts periodic boundary conditions to C-periodic, and vice ve~sa, so the distinction is illusory. 
Indeed we find the C-periodic formulation reproduces the physics of the periodic formulation. 
However, for N 1 3 C-periodic boundary conditions are different. 

Note that C-periodic boundary conditions are necessary for charged matter fields, even in anti- 
periodic Abelian gauge theory [z], as the picture of flux lines and image charges suggests. Hence, 
C-periodic boundary conditions are the natural generalization to non-Abe&n gauge fields, which 
are charged themselves. 

In addition to the viability of charged states, anti-periodic-or more generally C-periodic- 
boundary conditions simplify the structure of the magnetic and electric flux sectors. In the Abelian 
H gauge theory with periodic boundary conditions these sectors are described by global Z!d(d-1)/2 

‘An c-~Ic of the l&&r b hTk(F;jFjrF~i) = d”‘FGF;bFi;/4. 
‘As a rule, this paper lues the Lie algebra and group convention?, of ref. [3]. 
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and P symmetries, but with anti-periodic boundary conditions they are drastically reduced to Zs. 
The main result of this paper is the analogous statement for SU(N) gauge theories with C-periodic 
boundary conditions: For odd N there is no ‘t Hooft magnetic or electric flux, whereas for even N 
magnetic and electric flux are classified by Bs, rather than ZN. 

For odd N the absence of ‘t Hooft electric flux sectors may simplify sma&volume “analytic” 
calculations of the mass spectrum. Because of asymptotic freedom, in small volume Yang-m the- 
ories one can integrate out the non-zero momentum modes perturbatively, leaving a non-integrable 
effective Hamiltonian for the constant modes [3]. A (non-perturbetive) solution of the constant- 
mode dynamics yields results for the glueball mass spectrum that are rigorously correct in small 
volumes [4]. With periodic boundary conditions the electric-flux sectors are degenerate to all orders 
of perturbation theory. To compute the splitting between the sectors, it is necessary to account 
for tunneling between gauge field configurations related by gauge transformations with non-trivial 
winding number. Tunneling also significantly affects the glueball spectrum [5]. For odd N these 
complications will not arise, because there is only one sector. Further discussion of the small-volume 
expansion will appear in a forthcoming publication. 

This paper details the topological structure of C-periodic boundary conditions. Sect. 2 estab- 
lishes the gauge invariance, as well as some properties of the transition functions. Sects. 3 and 4 
investigate the properties of ‘t Hooft magnetic and electric flux, respectively. We work in d space 
dimensions, discussing the physical degrees of freedom in the Hamiltonian formulation. However, 
the essence of a Lagrangian, space-time formulation can be deduced from the formulae of sect. 3. 
sect. 5 examin es the “vacuum angle” 8. We switch to the (d+ 1) dimensional space-time formula- 
tion, for d = 3, and introduce the topological charge in sect. 6. The fractional part is that expected 
based on experience with periodic boundary conditions, combined with our results for the electric 
and magnetic flux. Only for even N can the fluxes contribute a half-integer part, and for odd N 
the topological charge is always an integer. 

2 Gauge invariance and transition function properties 

Consider the gauge transformation law of the gauge potential: 

#A(z) = g(z)[V + A(e)]g-l(r). (2.1) 

If one admits arbitrary gauge transformations, it follows immediately that the twist functions R; 
satisfy the transformation law 

‘Ri(iC) = g(S! + ki)fii(iE)gT(Z). (2.2) 

The superscript T denotes transpose, and for a unitary matrix gT = (g-l)‘. 
A precise interpretation of eq. (2.2) is based on expressing Ri is terms of transition functions 

[6]. In d dimensions the torus must be covered with 2“ cells, as depicted for d = 2 in fig. I. On the 
overlaps between cells Q and p, the gauge potentials within each cell are related by 

A(-)(=) = %p(z)[V + A’B’(=)]vpo(z), (2.3) 

where vg, = u$. Under a gauge transformation v-0 H ~wp~ with 

%q3 = !w,pgp’. (2.4) 

The torus is Td = IRd/A, with lattice A = {z 1 o = L xi rie<). The Hz transition functions can 
be incorporated implicitly by extending the SU(N) transition functions as 

h#(e + Jk) = v&(a), (2.5) 
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1 vI)I (L* E. x2) - Vh(E, X,) 

(3) (2) 

Figure t: Covering of the torus by 2d c&, illustrated for d = 2. The 04 denote the transition 
functions, where Q, ,0 E (O,l, 2,3}. (Cell labels in parentheses indicate periodic copies.) 

and the W(N) gauge transformations similarly as 

!?de + LCi) = s:(e). (2.6) 

These properties are illustrated in fig. 1. 
The twist (or “multiple transition” [S]) f unctions are obtained from the transition functions in 

the limit 6 + E + 0. For d = 2 

nl(z2) = linL-4 VOl(Z - E,ZS)Vf~(Sy ZS), 

(2.7) 
%(+I) = ~-4 VOl(Zl, L - s)u;tJ(zl, E), 

and the generalieation to higher d is obvious. The gauge transformation law, eq. (2.2), is then a 
trivial consequence of eq. (2.4). It is now clear, however, that one admits arbitrary gauge tramfor- 
mations in eqs. (2.1) and (2.2), because g&L-* need not equal g&i=r. 

Furthermore, using the well-known cocycle condition 

%7(a) = w(~h.r(=)r (2.8) 

one can derive the corresponding identity for the e: 

fl<(E + Zej)n;(E) = nj(a + Ze<)flf(Z). (2.9) 

The previous discussion has not specified whether there are matter fields in a faithful repre- 
sentation of W(N). If all fields faithfully represent only SU(N)/ZN, the equations should be 

3 



interpreted in the adjoint representation of SU(N). Maps from the circle into SU(N)/HN can be 
homotopically non-trivial, because it is not simply connected: l’fl(Su(N)/Z~) = ZN. This home- 
topy is relevant to the torus, because Td = (S’)d. When non-trivial snaps are pulled back to the 
fundamental representation of SU(N), which can only be done locahy, BN discontiuuities appear. 
In sects. 3 and 4 we shall use the SU(N) notation with ZN jumps, because it is easier to envision 
SU(N) than the quotient space SU(N)/HN. 

3 Magnetic Flux 

For pure gauge theories the twist function n;(z) is equivalent to (ini( where ii is an N-th root 
of unity, and ni(e) is considered to be in the fundamental representation of SU(N). Similarly, the 
cocycle condition for the twist functions reads 

fti(a + Lej)fl:(e) = Zijnj(Z + L*i)flf(Z)* (3.1) 

The “twist tensor” r consists of N-th roots of unity, and rji = +. ‘T Hooft’s magnetic flux is given 
by nij E ZN, where Z<j = exp(i2rn;j/N). The twist tensor is gauge invariant, and furthermore, 
if {fli} and (II:} produce the same twist tensor, then one can construct a gauge transformation 
relating them. 

Introducing the factors [i and writing cfcj = Wij shows that the twist tensors Zij and qjw$ 
are physically equivalent. This is a significant diJ%rence with periodic boundary conditions, where 
identical pi factors would appear on both sides of eq. (3.1). 

Ifd = 2 the only non-trivial component of the twist tensor is 11s. If N is odd, every N-th 
root of unity has a square root in the set of N-th roots of unity. Hence, alI choices of .srs are 
equivalent to 11s = 1, and consequently there are no magnetic flux sectors. If N is even, either zrs 
or zls exp(-i2s/N) has a square root in the set of N-th roots of unity. Then, all choices of zrs are 
equivalent to zrs = I or +rs = exp(i2sr/N), and consequently magnetic flux sectors are classified by 

%l E & 
For d > 2 the trivial identity WijWjkWki = 1 implies that not all components of w are indepen- 

dent. However, on the one hand 

ni(r + L*j + Lek)nz(r + Lek)Rk(Z) = 

nj(r + Lei + kk)nl(E + hk)ftk(a)Z;j = 

nj(z f Lei + l?dek)ni(Z f Lei)ni(r)~jz;j+ki = 

Rk(Z + LC f hej)n;(r + h?i)fk(2)ZijZk;Zjk, (3.2) 

while on the other hand 

ni(a + L8j + hk)n;(E + Lek)&(a) = 

&(Z + kj t zek)ny(2 t &?j)Rj(o)Zkj = 

nk(e + Lej + &ei)nI(‘Z + Ihj)Rj(*)Zkj&k = 

f&(8! + kj t k?i)ftj(E + &)&(Z)ZkjZ&Zji. 

Comparing the accumulated factors of I reveals a constraint on z, 

(3.3) 

12 2 
,zijZjkZki = 1, (3.4) 

which compensates for the restriction on W. The square root argument again leads to the conclusion 
that there is no ‘t Hooft magnetic flux if N is odd, and that ‘t Hooft magnetic flux is described by 
Z$d-l”l if N is even. 
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4 Electric Flux 

To study the electric flux sectors we consider the homotopy properties of gauge tramformations. 
Those homotopic to the identity must be represented by unity on the Hilbert space of states, but 
in general they are represented by a unitary operator. ‘T Hooft electric flux parametrizes the 
eigenvalues that arise from gauge transformations’ first homotopy. A C-periodic SU(N)/$N gauge 
transformation, writtenin the fundamentalrepresentation of SU(N), can have an explicit &jump: 

gZ(e + k) = W;(~)v (4.1) 

where the Li = exp(i2?mi/N) are N-th roots of unity, and R; is the winding number of gr viewed as 
amap into SU(N)/ZN. C-periodic boundary conditions require the complex conjugation. Compare 

gZ(E + Lei + Lej) = ZiZigZ(r) 

with 
g.Z(E + Lej + Lei) = ZjZlgZ(Z); 

the HN jumps are consistent if and only if 

(4.2) 

(4.3) 

zi’ = z? 3’ (4.4) 

Hence, all ri must be equal when N is odd, and the various Zi are equal up to a sign when N is 
even. 

Let Ts, sometimes called a central conjugation, be the unitary operator in Hilbert space im- 
plementing the gauge transfornration gr. Because the Hamiltoniau and all central conjugations 
commute, these operators can be simultaueously diagonal&d. Thus, 

Tz(@)lqe) = =xp (i$we(n)) l*e), (4.5) 

where I’P.) is an eigenstate of the Hamiltonian labeled by quantum numbers e, which will turn 
out to be ‘t Hooft electric flux. The reader should not confuse e with the spatial unit vectors ei; 
both notations are conventional. The quantity we(n) must be linear in TL, and, since 2’; = 1, 

we(n) E ZN. 

With periodic boundary conditions w,(n) = e. ra, and ah states with e F iZd, appear in the 
Hilbert space, but not so with C-periodic boundary conditions. First, I is contrained by eq. (4.4). 
Second, note that the constant gauge transformation w, where we is an N-th root of unity, obeys 
eq. (4.1) with ri = ws, Vi. Consequently, the phases induced by Tr and T,t, must be the same, 
because any constant map is homotopic to the identity. 

When N is odd, eq. (4.4) implies that 

w,(n) = En, (4.6) 

where n is the value of the components, all equal, of n, and E E &. Substituting I and wsz into 
eqs. (4.5) and (4.6) and equating the phases yields 

2E = 0 mod N. (4.7) 

But since IV/Z is not an integer, the only possibility is that E = 0. In other words, there are no 
electric flux sectors for N odd. 
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When A’ is even, eq. (4.4) implies that 

N 
Tli=n+Vi- 

2’ (4.8) 

where n E HN and Vi E Hz, ad one cm choose, say, the I component ~1 = 0. By linearity in n 
one has 

N 
w.(n)=En+e.v- 

2’ (4.9) 

where E E HN and ei E Zs, except er is not (yet) defined. Equating the phases induced by Tz 
and T,a, again yields eq. (4.7), but now E is either 0 or N/2. Defming er = 2EIN produces a 
‘t Hooft electric flux vector e E Z $ The Zt electric flux sectors share most of the properties of 
the Z!$ sectors familiar from periodic boundary conditions. In particular, they are superselection 
sectors: no local operator can connect two distinct sectors, although operators that wrap around 
the torus can. In the periodic case the Polyakav loops winding around the torus connect the 
various flux sectors. With C-periodic boundary conditions only the real part of the Polyakov loop 
is gauge invariant, and, for even N, the real part of the Polyakov loop changes sign under central 
conjugation. Thus, it has non-zero matrix elements between states whose Z!a electric-flux vectors 
differ. 

5 &Vacuum 

The third homotopy group of SU(N) is also non-trivial, so for d = 3 states are classified by yet 
another topological quantum number. On the sphere or with periodic boundary conditions, the 
quantum number ia the “vacuum angle” 0. Using the map h defined in eq. (1.2), one finds that the 
topology is the familiar one also in the C-periodic case. 

T&e -L/2 < zi 5 L/2 and consider the periodic maps 

kl(r) = exp (d+)) , k, = k;, n E Z, 

into SU(2), where L = la//L and the function f( ) t L 1s wice differentiable on [0, d/2], and 4(z) = 
rf(z) satisfies 4(O) = 0 and $(z) = P, for z 1 l/2. The map k, has a winding number 

& J,, d3+ E;jkTT{kn’(r)Vik,(r)k,‘(r)Vjk,(r)k,’(r)Vbk,(r)} = n (5.2) 

over the torus, and all maps with the same winding number can be smoothly deformed into km. 
However, for C-periodic boundary conditions we would like a C-periodic function with winding 
number n. Such a function is i, E hk,h-‘. Further, let g,, (&,) be k, (i,,) embedded into 
SU(N). By a theorem of Bott alI periodic (C-periodic) SU(N) maps with winding number n can 
be deformed into g,, (&,). 

The Hamiltonian commutes with the unitary operator T,, implementing the gauge transforma- 
tion &, so 

T&)l*e) = =‘“s/*e), (5.3) 

where I!Z!o) is an eigenstate of the Hamiltonian, and, like the ‘t Hooft electric flux e, the angle 0 
labels superselection sectors. 

For d = 5, 7, 9,. . . there is more topology to discuss, because II,,+,(SU(N)) = Z for N > m. 
For example, it is easy to see that &(SU(J)) = Z, because SU(3) is a non-trivial bundle over S5 
with fiber S3. We shall not discuss these issues here, because they follow straightforwardly, and 
because we are most interested in d = 3. 
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6 Topological charge 

We end the topological discussion of C-periodic gauge fields by considering the Pontryagin index 
in four-dimensional space-time. We consider a Euclidean time interval 0 < t < T with periodic 
boundary conditions. In the spatial directions the time-like component A0 satisfies a boundary 
condition analogous to eq. (1.1). 

The Pontryagin index is intimately related to the homotopy classes of the fl,: 

Yjkninjk, 

where Greek indices run from 1 to 4 and Latin indices from 1 to 3. As in sect. 3, nj and flk 
produce the magnetic-flux winding numbers njk. Analogously to sect. 3, ni and 00 produce the 
electric-flux winding numbers ni. This definition of electric flux, in a (d+l)-dimensional Lagrangian 
formulation, is the same as the definition in sect. 4. Finally, the meaning of the integer Y is the 
same as with periodic boundary conditions. 

Eq. (6.1) W(UI derived in ref. [6] for twisted periodic boundary conditions. The proof follows 
almost unchanged for twisted C-periodic boundary conditions because the Pontryagin density haa 
C = +l and is therefore periodic. The difference with C-periodic boundary conditions is that the 
values of q and TXjk are restricted by the constraints derived in sects. 3 and 4. 

For odd N eqs. (4.4) and eq. (3.4) imply nI = nz = no and nz3 + n3* + nil = 0 mod N, 
respectively. Thus 

N-l N-l 
-.S;jkn;,tjk = 

2N Nm(n33 t n31 + n12) E c (6.2) 

the ‘t Hooft electric and magnetic fluxes contribute an integer, but not a traction, to the Pontrya@ 
index. Alternatively, one could argue that there can be no fractional part to P, because all choices 
of ni and njk are gauge equivaknt to ni = 0 and njk = 0. Note that this structure is the mme as 
when the infinite volume is compactiIied (following a dynamical assumption on the fields at infinity) 
to 9. 

For even N eqs. (4.4) and eq. (3.4) imply 

$(n, - n,)n31 = 0 mod a, 

$a, - n&al2 = 0 mod ;, 

1 
Fn~(nm t 7131 t nn) = 0 mod ;. 

(6.3) 

Hence 

N-l 
-Eijkninjk = 

2N mm + -2) f (112 - ‘b)‘%~ + (Q - nl)n12] = 0 mod ;. (6.4) 

the ‘t Hooft electric and magnetic fluxes contribute a half-integer to the Pontryagin index. This 
structure is like that of SU(2) gauge theory with periodic boundary conditions. 

7 Conclusions 

C-periodic boundary conditions are an alternative to periodic ones for SU(N) gauge fields with 
N > 2. As a first step in studying these boundary conditions, this paper has shown how topology 
affects the classification of physical states in a C-periodic box. Our major results are as follows: 
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For all N, states are characterized by the quantum number 0. For SU(3) and for all other odd N 
the topology of C-periodic fields is the same as in the infinite volume. In particular, there are no 
electric or magnetic flux sectors and the topological charge is always an integer. For even N the 
symmetry of the flux sectors of C-periodic fields is reduced to Ps compared to the HN symmetry 
of the periodic case. Consequently the topological charge may assume half-integer values. 

There are several applications of C-periodic boundary conditions that come to mind. Fist, the 
generalization to matter fields is straightforward: the fields-be they scalars or spinors, bosons or 
fermions-are replaced by their charge conjugates when they are shifted over the boundary. With 
fermions an additional minus sign may also be contemplated. 

Second, it is possible to develop the small volume expansion as in refs. [3, 41. Owing to the 
absence of flux sectors the SU(3) glueball spectrum in a small C-periodic box is not affected 
by tunneling transitions as in the periodic case. A thorough treatment of the tunneling problem 
required a series of impressive papers [5,8], yielding the important result that the tunneling between 
distinct central conjugates of the perturbative vacuum alters the glueball spectrum in dramatic 
ways. In a forthcoming publication 171, we will show that there is only one stable perturbative 
vacuum with C-periodic boundary conditions, substantiating the claim that there is no tunneling 
to complicate the computation of the spectrum. There are other complications: For example, a 

breakdown of full rotational invariance at lower order in &“, but it remains to be seen how much 
these effects change the glueball spectrum. 

Third, it is interesting to apply C-periodic boundary conditions to Yang-Mills theories at non- 
rero physical temperatures. In the periodic case the ZN center symmetry breaks spontaneously 
in the high-temperature gluon-plasma phase. C-periodic boundary conditions break the center 
symmetry explicitly, for N > 2. The explicit symmetry breaking acts as a source coupled to the 
order parameter, but its strength vanishes as the volume is taken to infinity. In the confined phase, 
the vacuum expectation value of the order parameter will be non-zero, but its value will decrease 
with increasing volume. In the plasma phase, the order parameter will maintain a non-zero value, 
for all volumes. In finite volumes the source-like nature of the explicit breaking should inhibit the 
tunneling that occurs with periodic boundary conditions. Consequently, the order parameter will 
not average to zero. 

Fourth, C-periodic boundary conditions can also be used in lattice gauge theories. Numerical 
simulations of field theories are necessarily limited to finite volumes, and it is essential that the 
boundary conditions do not introduce artifacts that only disappear slowly in the infinite volume 
limit. Periodic boundary conditions do indeed introduce such artifacts via the ZN flu sectors. 
But C-periodic boundary conditions eliminate the flux sectors from SU(N) lattice gauge theory 
when N is odd, just as in the continuum, and they reduce them to Bs when N is even. Hence, it is 
not unreasonable to speculate that the spectrum of a C-periodic box may better approximate the 
infinite-volume spectrum than a periodic box of equal size. Of cause, only detailed simulations 
with both boundary conditions can validate or discredit this speculation. 

Finally, a Coulomb-gauge charged state,s such as a quark or a gluon, can be defined, because the 
flux can escape beyond C-periodic boundaries. Of course, the Coulomb gauge suffers from a Gribov 
ambiguity [9]. A deeper understanding of the Gribov problem’s effect on charge states will plausibly 
require non-perturbative insight. However, non-perturbative calculations in gauge theories, either 
using a lattice or the methods of refs. [4, 51, require a finite volume to regulate infrared effects. To 

make progress on this front one needs a ftnite volume that can support (something likes) a charged 

SStdctly speaking, a state with definite C but indefinite charge CM be defined. In the infinite-vohum limit, a pair 
of states, one with C = fl and the other with C = -1, becomes degenerate, and particle and anti-particle linear 
combinstiom can be formed. See ref. [2] for details. 



state: one possibility is the torus, but with C-periodic boundary conditions. 
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